Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0380219950280050408
Journal of Biochemistry and Molecular Biology
1995 Volume.28 No. 5 p.408 ~ p.413
Purification and Characterization of Soybean Cotyledonary Spermidine Dehydrogenase
Park Sung-Joon

Cho Young-Dong
Abstract
Decrease in the amount of cotyledonary spermidine in Glycine max under anaerobic conditions related to an increase in spermidine dehydrogenase. Under the same conditions, no enzymatic activity of diamine oxidase was observed. Exposure of Glycine max both to spermidine and 1,3-diaminopropane under anaerobic conditions resulted in a decrease in spermidine contents. Correlated with the decrease in spermidine contents, there was a drastic increase in spermidine dehydrogenase. The molecular weight of the purified enzyme estimated by Sephacryl S-300 gel column and SDS gel electrophoresis were 130,000 dalton and 65,000 dalton, respectively, indicating that the enzyme is a dimer. The optimal pH for activity was 9.3. The Km value for spermidine was 0.61 mM. Neither metal ions nor polyamine and derivatives affected enzymatic activity, but the enzyme was inhibited by DTNB, NEM and PCMB, suggesting that a cysteine residue of the enzyme is associated with or involved in enzyme activity. To our knowledge, this is the first report describing properties of the enzyme from plants. Considered together, the data in this paper indicate that both spermidine and 1,3-diaminopropane, novel activators, enhance the spermidine dehydrogenase activity and control the intracellular spermidine contents.
KEYWORD
anoxia, 1,3-diaminopropane, Glycine max, spermidine, spermidine dehydrogenase
FullTexts / Linksout information
Listed journal information